Abstract

The risk of sea-spray icing on vessels and marine structures in cold regions highlights the need for an accurate and robust marine-icing estimation model. To develop such a model, it is crucial to accurately determine the quantity of liquid water available for freezing on the structure, as it directly influences ice formation. As sea spray constitutes the primary source of liquid water contributing to marine icing, researchers have often focused on measuring sea-spray flux from field campaigns to establish empirical expressions for icing estimation. However, due to the lack of standardised equipment or methods for such measurements and concerns regarding the generalisability and transferability of resulting empirical expressions, researchers have resorted to employing a variety of equipment and techniques tailored to their specific research requirements. Nevertheless, these approaches have inherent limitations. This paper introduces a novel spray collector device inspired by the cyclone separator, capable of performing real-time autonomous spray flux measurements on vessels and moving platforms. The collector is constructed using carbon fibre-infused nylon material, ensuring durability in harsh cold marine climates. Computational Fluid Dynamics (CFD) simulations and laboratory tests demonstrate that the design of the new collector is more efficient than that of the previously employed devices, particularly at higher wind speeds. The device is currently deployed on a fish farm in Northern Norway in order to assess its performance in field conditions. The paper also shares preliminary findings, experiences, and limitations encountered during the deployment period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.