Abstract

Periodontium is a complex system of different tissues, such as connective tissue, cartilage and bone, which work together to sustain the tooth. Gingivitis and periodontitis are devastating diseases that could affect the structure and function of the periodontal tissue. When the gingivitis are not treated and controlled with a correct oral hygiene, they could evolve in periodontitis, which could seriously damage the tissue surrounding the tooth and lead tooth loss. The main objective of periodontal tissue engineering is to regenerate the tooth's supporting tissues. Periodontal tissue regeneration involves formation of new connective tissue (cementum and periodontal ligament) and new alveolar bone. The restoration of tooth by using a titanium dental implant is nowadays a quite common procedure. However, the positive fate of a surgical procedure that involves an insertion of titanium screw depends on the quality and quantity of alveolar bone which is present in the extraction site. The main objective of this doctoral thesis is to develop a set of novel biomaterials, designed to improve periodontal bone regeneration in patients and to control or prevent the bacterial infection in the wound site, via a sustained in situ drug release. Three different materials have been developed and characterized: 1. Three-dimensional porous scaffold coated with a polyelectrolyte complex for periprosthetic infection prevention 2. Bioceramic-reinforced hydrogel for alveolar bone regeneration 3. Antiadhesive guided tissue regeneration membrane The results demonstrated that they could be used in periodontal tissue engineering with predictable and excellent outcomes. With this set of biomaterials it is possible to control or prevent possible bacterial growth, achieve the correct alveolar bone quantity and quality and guide the tissue regeneration

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call