Abstract
As competition increases and new technologies emerge, the civil aerospace industries need relatively better appropriate frameworks to guarantee their success. Efficient and close interactions among all disciplines involved in the aircraft design process from manufacturing, to the flight testing, are essential for improving the quality of the product. However, such necessities generally lead to a lengthy design cycle. Because of this, a strategy for cycle time reduction (CTR) must always be available. This process is called Integrated Airframe Design (IAD), (AGARD Report 814). A proper CTR leads to lessened costs which is essential in surviving a competition since time, cost and quality are three parameters that are normally used to evaluate the efficiency of a design process (Ullman, 2003). Researches on CTR could be categorized into four branches: 1reducing engineering man hours; 2reducing tooling hours; 3reducing testing activities 4implementing process and information technologies(NASA/CR-2001-210658). In the design process of complex systems, similar to that of an airplane, engineering tasks are either: coupled, sequential, parallel or compound ones. The design process of such a product is naturally in an iterative form (Eppinger & Whitney, 1994). In the scientific modeling of a design process, iterations are considered as specific features to be addressed (NSF, 1996). Iterations of a design process could be divided into two types (Browning, 1998): 1. Intentional iterations, performed between any two disciplines which help converging toward a satisfying solution. 2. Unintentional iterations that occur due to arrival of new information into the design process. In this chapter we concentrate on the first type. The very existence of iterations in the design process is the primary source of the increase in the development cycle time and its associated cost. Several studies have documented iteration effects as the driver of the overall development cycle time (Clark, 1993, Eisenhardt, 1995). Therefore, one expects that managing iterations and keeping them to a minimum leads to a more efficient design process. In this chapter, we investigate reducing man-hours by improving iteration characteristics. According to Smith and Eppinger there are two main strategies in increasing the speed of the design process: 1faster execution of iterations; 2reducing the number of necessary iterations in the design process (Smith & Eppinger, 1997). Extensive studies have been carried out by different researchers for either strategy. For example, the information flow model in designing tasks and distinguishing their cyclic
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.