Abstract
Parametric analysis of a two-layered axially loaded strand is performed using the recently developed p-version finite element code, which describes the geometry well and takes into account all possible inter-wire motions and frictional contact between the wires. A special nonlinear contact theory was developed based on the Hertz-theory. It is assumed that the wires have homogenous, isotropic, linear elastic material properties. The developed code is a tool for designing wire rope strands that require low computer resources and short computational time. Case studies are performed to verify and demonstrate the efficiency and applicability of the method. Design curves are presented according to the strand geometry parameters such as helix angle and ratio of the wire radius in the different layers. The optimal geometry parameters for a given strand can be determined using these design curves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.