Abstract

Design strategies for microstructured-optical-fiber (MOF-) based surface-plasmon-resonance (SPR) sensors are presented. In such sensors, plasmons on the inner surface of the large metallized channels containing analyte can be excited by a fundamental mode of a single-mode microstructured fiber. Phase matching between a plasmon and a core mode can be enforced by introducing air-filled microstructures into the fiber core. Particularly, in its simplest implementation, the effective refractive index of a fundamental mode can be lowered to match that of a plasmon by introducing a small central hole into the fiber core. Resolution of the MOF-based sensors is demonstrated to be as low as 3×10−5 RIU, where RIU means refractive index unit. The ability to integrate large-size microfluidic channels for efficient analyte flow together with a single-mode waveguide of designable modal refractive index is attractive for the development of integrated highly sensitive MOF-SPR sensors operating at any designable wavelength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.