Abstract
Haptic feedback is known to enhance the realism of an individual’s interactions with objects in virtual environments. Wearable haptic devices, such as vibrotactile sleeves or armbands, can provide haptic feedback in a smaller and more lightweight form factor than haptic gloves that can be bulky and cumbersome to the wearer. In this article, we present tactile and squeeze bracelet interface (Tasbi), a multimodal haptic wristband that can provide radial squeeze forces around the wrist along with vibrotactile feedback at six discrete locations around the band. Tasbi implements a squeezing mechanism that minimizes tangential forces between the band’s points of contact with the skin, instead of focusing the motor actuation to predominantly normal forces. Force sensing capacitors enable closed-loop control of the squeeze force, while vibration is achieved with linear resonant actuators. A detailed description of the design and experimental results demonstrating closed-loop control of squeeze cues provided by Tasbi is presented. Additionally, we present the results of psychophysical experiments that quantify user perception of the vibration and squeeze cues, including vibrotactile identification accuracy in the presence of varying squeeze forces, discrimination thresholds for the squeeze force, and an analysis of user preferences for squeeze actuation magnitudes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.