Abstract

ABSTRACT In this work, a novel aircraft door sealing structure driven by shape memory alloys (SMAs) is proposed that offers much improved sealing capability than traditional sealing plates. The two-way shape memory effect (TWSME) of SMAs is utilized so that the proposed sealing plate can change its shape through heating and cooling of the driving SMA unit. Considering the inhomogeneous temperature and recovery strain field the SMA exhibits while being trained, a modified finite element (FE) model of the sealing structure is established to predict the deflection of the SMA-based sealing plate. Finally, verification experiments are carried out. The experimental results show good agreement with the FE predictions, indicating good accuracy of the modified FE model as well as the effectiveness of the proposed sealing structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.