Abstract
Mid-infrared and terahertz free-electron laser (MIR/THz FEL) facility is under the construction at the PBP-CMU Electron Linac Laboratory (PCELL) in Chiang Mai University. For producing MIR-FEL, electron beams with an energy of 25 MeV accelerated by a radio-frequency linear accelerator (RF linac) are required. Transporting the 25-MeV electron beam from the linac to the MIR-FEL station requires small dipole magnets for steering the electron beams along the beamline. This work focuses on the design, construction, and measurement of an electromagnetic steering magnet for controlling the electron beam trajectory. A computer software, CST Studio Suite 2022 is used for the 3D magnetic field simulation of the magnet. The physical length of the magnet and the diameter of copper coil are decided based on the simulation and calculation results. After the construction, a hall probe with a measuring system controlled by a computer program is used to measure the magnetic field for comparison with the simulation results. From simulated and calculated results, the steering magnet with a length of 40 mm and the coil with a diameter of 1.06 mm was chosen. At an applied current of 1.8 A, this steering magnet can bend the 25-MeV electron beam with a bending angle of 13.7 mrad. The measured magnetic field is consistent with the simulated results. The advantage of this steering magnet is that it can be assembled on a square frame for steering the beam in both horizontal and vertical direction. It can also be used for the THz-FEL beamline, which requires the electron beam with an energy of 10-16 MeV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.