Abstract

RNA can play multiple biological roles through use of its three-dimensional (3-D) structures. Recent advances in RNA structural biology have revealed that complex RNA 3D structures are assemblages of double-stranded helices with a variety of tertiary structural motifs. By employing RNA tertiary structural motifs together with the helices, we designed a novel class of self-folding RNA. In RNA composed of three helices (P1, P2, and P3), P1 interacts with P3 via a tetraloop-receptor interaction and P2 forms consecutive base-triples. Two designed RNAs of this class were prepared and their folding properties indicate that they form defined tertiary structures as designed. These RNAs may be used as modular units for constructing artificial ribozymes or nanometer-scale materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.