Abstract

A velocimetry experiment has been designed to measure shock properties for small cylindrical metal targets (8-mm-diameter by 2-mm thick). A target is accelerated by high explosives, caught, and retrieved for later inspection. The target is expected to move at a velocity of 0.1 to 3 km/sec. The complete experiment canister is approximately 105 mm in diameter and 380 mm long. Optical velocimetry diagnostics include the Velocity Interferometer System for Any Reflector (VISAR) and Photon Doppler Velocimetry (PDV). The packaging of the velocity diagnostics is not allowed to interfere with the catchment or an X-ray imaging diagnostic. A single optical relay, using commercial lenses, collects Doppler-shifted light for both VISAR and PDV. The use of fiber optics allows measurement of point velocities on the target surface during accelerations occurring over 15 mm of travel. The VISAR operates at 532 nm and has separate illumination fibers requiring alignment. The PDV diagnostic operates at 1550 nm, but is aligned and focused at 670 nm. The VISAR and PDV diagnostics are complementary measurements and they image spots in close proximity on the target surface. Because the optical relay uses commercial glass, the axial positions of the optical fibers for PDV and VISAR are offset to compensate for chromatic aberrations. The optomechanical design requires careful attention to fiber management, mechanical assembly and disassembly, positioning of the foam catchment, and X-ray diagnostic field-of-view. Calibration and alignment data are archived at each stage of the assembly sequence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call