Abstract

This article presents a Monte Carlo simulation of the detector energy response in the presence of pileup in a segmented silicon microstrip detector designed for high flux spectral computed tomography with sub-millimeter pixel size. Currents induced on the collection electrode of a pixel segment are explicitly modeled and signals emanating from events in neighboring pixels are superimposed together with electronic noise before the entire pulse train is processed by a model of the readout electronics to obtain the detector energy response function.The article shows how the lower threshold and the time constant of the electronic filters need to be set in order to minimize the detrimental influence of cross talk from neighboring pixel segments, an issue that is aggravated by the sub-millimeter pixel size and the proposed segmented detector design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.