Abstract

Diffuse intrinsic pontine glioma (DIPG), a rare pediatric brain tumor, afflicts approximately 350 new patients each year in the United States. DIPG is noted for its lethality, as fewer than 1% of patients survive to five years. Multiple clinical trials involving chemotherapy, radiotherapy, and/or targeted therapy have all failed to improve clinical outcomes. Recently, high-throughput sequencing of a cohort of DIPG samples identified potential therapeutic targets, including interleukin 13 receptor subunit alpha 2 (IL13Rα2) which was expressed in multiple tumor samples and comparably absent in normal brain tissue, identifying IL13Rα2 as a potential therapeutic target in DIPG. In this work, we investigated the role of IL13Rα2 signaling in progression and invasion of DIPG and viability of IL13Rα2 as a therapeutic target through the use of immunoconjugate agents. We discovered that IL13Rα2 stimulation via canonical ligands demonstrates minimal impact on both the cellular proliferation and cellular invasion of DIPG cells, suggesting IL13Rα2 signaling is non-essential for DIPG progression in vitro. However, exposure to an anti-IL13Rα2 antibody–drug conjugate demonstrated potent pharmacological response in DIPG cell models both in vitro and ex ovo in a manner strongly associated with IL13Rα2 expression, supporting the potential use of targeting IL13Rα2 as a DIPG therapy. However, the tested ADC was effective in most but not all cell models, thus selection of the optimal payload will be essential for clinical translation of an anti-IL13Rα2 ADC for DIPG.

Highlights

  • 350 children per year in the United States are diagnosed with the high-grade glioma (HGG) subtype denoted diffuse intrinsic pontine glioma (DIPG), which represents 16% of all pediatric and young adult central nervous system tumors [17,22,52]

  • Functional impact of IL13Rα2 in DIPG growth and invasion Given the overexpression of IL13Rα2 and the importance of the receptor in other diseases, we first investigated the role of IL13RA2 signaling in DIPG

  • Lack of DIPG-24 response is consistent with the lower expression of IL13Rα2 in the assayed cell models, as DIPG-24 has reduced expression compared to SF-8628

Read more

Summary

Introduction

350 children per year in the United States are diagnosed with the high-grade glioma (HGG) subtype denoted diffuse intrinsic pontine glioma (DIPG), which represents 16% of all pediatric and young adult central nervous system tumors [17,22,52]. DIPG cells disseminate and can invade into multiple brain regions and even into the spinal cord [12,46]. Standard clinical care for DIPG consists of 54–60 Gy local field radiotherapy dosed over 6 weeks which temporarily improves patient neurological function and extends survival by 2–3 months [45], resulting in lower quality of life due to negative long-term effects of radiation on pediatric brain function and development [8]. Despite investigation of multiple regimens based on chemotherapy, radiotherapy or next-generation targeted therapeutic agents, outcomes for DIPG remain essentially unchanged resulting in a disease marred by minimal long-term survivorship desperately in need of new targets and therapeutics [9,14,18,20,21,27,29,38].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call