Abstract
For clinical trials with time-to-event as the primary endpoint, the clinical cutoff is often event-driven and the log-rank test is the most commonly used statistical method for evaluating treatment effect. However, this method relies on the proportional hazards assumption in that it has the maximal power in this circumstance. In certain disease areas or populations, some patients can be curable and never experience the events despite a long follow-up. The event accumulation may dry out after a certain period of follow-up and the treatment effect could be reflected as the combination of improvement of cure rate and the delay of events for those uncurable patients. Study power depends on both cure rate improvement and hazard reduction. In this paper, we illustrate these practical issues using simulation studies and explore sample size recommendations, alternative ways for clinical cutoffs, and efficient testing methods with the highest study power possible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.