Abstract

Switched-reluctance-machine (SRM) technology is a potential candidate for the propulsion systems of hybrid and plug-in hybrid electric vehicles. They are robust in harsh operational conditions and have a wide constant power speed range. Conventional SRM configurations have a higher number of stator poles than rotor poles. This paper presents the advantages of a novel SRM configuration with the number of rotor poles greater than the number of stator poles. It also investigates different design challenges toward the traction applications. The proposed SRM configuration is based on a pole-design formula. Geometrical design equations and related challenges are introduced, and their applicability has been verified on a three-phase 6/10 SRM using finite-element-analysis simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call