Abstract

Nanoantennas for visible and infrared radiation can strongly enhance the interaction of light with matter by their ability to localise electromagnetic fields on nanometric scales. This allows for the engineering of the absorption and radiation capabilities of nanoemitters, such as dye molecules or quantum dots. In this article, we discuss the main parameters influencing the near-field enhancement provided by dimer-type nanoantennas, the configuration most thoroughly studied in the literature. To facilitate the design of structures, we analyse the influence of the substrate, adhesion layers and a reflective metal underlayer, as well as their arrangement in a periodic fashion. We also highlight the factors which increase the damping of the localised plasmonic modes and the spectral differences between far and near-field resonances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call