Abstract

This paper presents some design considerations for synchronous machines characterized by a fractional number of slots per pole per phase. The main advantage of this configuration is a smooth torque, which is due to the elimination of periodicity between slots and poles. A second advantage is a higher fault-tolerant capability, making the machine able to work even in faulty conditions. However, the fractional-slot configuration presents a high content of MMF harmonics that may cause an unbalanced saturation and thus an unbearable torque ripple. A method to design fractional-slot machines is illustrated in this paper, including double-layer and single-layer windings. The analytical computation is extended to determine the harmonics of MMF distribution. Their effect is highlighted in isotropic as well as anisotropic machines. Finally, some considerations are reported to avoid unsuitable configurations

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.