Abstract

The prompt- and delayed-gamma neutron activation techniques have been used for the non-invasive measurement of human body composition. In recent years, neutron irradiators have used only transuranic isotopic sources (238PuBe, 241AmBe, 252Cf). However, in today’s security-minded environment, the use of alternate neutron sources may provide some advantages. We have examined several designs for an irradiator that would use a high-output, miniature D-T neutron generator (MF Physics). The use of this type of neutron source will lessen the storage, security, and transport issues associated with continuous-output isotopic neutron sources. To determine the scientific impact of this decision, we have performed Monte Carlo simulations (MCNP-4B2; Los Alamos National Laboratory) to aid in the design of the irradiator system, evaluating shielding materials, collimation, and source-to-subject distance, for the measurement of total body nitrogen (TBN). Based on internal flux distributions within the simulated body region of a subject, several design options were identified. The final design will be selected based on the optimization of precision, dose, and exposure time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call