Abstract

The provision of wireless and battery-free power is key to extending the applications of body-worn sensing electronics. This paper investigates the design of an IPT system for a body-worn scenario where the challenges include highly variable coupling, the requirement for the coil/s to be flexible, and close proximity to the body. Variable coupling results in a system that must operate with received powers ranging over orders of magnitude, whilst the use of flexible coils reduces the Q-factor and results in the potential for inductance variation. The human exposure considerations limit both the maximum field strengths that the wearer of a receiver coil might experience and the field strengths that a third party might be exposed to. In this paper, analytical models are used to identify key design variables and to guide the design synthesis of an IPT system for a wrist-worn medical sensor. Practical circuits to drive the transmit coil and to interface the receive coil with the load electronics are described. A prototype system is tested to validate the theoretical analysis, providing power greater than 2 mW to the sensor over a hemispherical region up to 250 mm in radius from the transmit coil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call