Abstract

In this paper, the performance of a novel design of passive polarization rotator (PR) based on silica photonic crystal fiber is studied and analyzed using the full vectorial finite difference method along with the full vectorial finite difference beam propagation method. The proposed design has a rectangular core region with a slanted sidewall. The influence of the different structure geometrical parameters and operating wavelengths on the PR performance is investigated. At a wavelength of 1.55 μm, nearly 100% polarization conversion ratio is obtained, with a device length of 2839 μm. In addition, it is expected that over the 1.5 to 1.6-μm wavelength range, polarization conversion would be more than 99%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.