Abstract
Although various types of materials have been used widely in dialyzers, most biomaterials lack the desired functional properties to interface with blood and have not been engineered for optimum performance. Therefore, there is increasing demand to develop novel materials to address such problems in the dialysis arena. Numerous parameters of polymeric biomaterials can affect biocompatibility in a controlled manner. The mechanisms responsible for the biocompatibility of polymers at the molecular level have not been clearly demonstrated, although many theoretical and experimental efforts have been made to try and understand them. Moreover, water interactions have been recognized as fundamental for the blood response to contact with polymers. We have proposed the 'intermediate water' concept and hypothesized that intermediate water, which prevents the proteins and blood cells from directly contacting the polymer surface, or nonfreezing water on the polymer surface, plays an important role in the biocompatibility of polymers. This chapter provides an overview of the recent experimental progress of biocompatible polymers measured by thermal, spectroscopic, and surface force techniques. Additionally, it highlights recent developments in the use of biocompatible polymeric biomaterials for dialyzers and provides an overview of the progress made in the design of multifunctional biomedical polymers by controlling the biointerfacial water structure through precision polymer synthesis. Key Messages: Intermediate water was found only in hydrated biopolymers (proteins, polysaccharides, and nucleic acids, DNA and RNA) and hydrated biocompatible synthetic polymers. Intermediate water could be one of the main screening factors for the design of appropriate dialyzer materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.