Abstract

This paper presents the design and implementation of a Tactile/Force sensor which has been used on a 3-DOF decoupled parallel mechanism for Human-Robot Interaction purposes.The sensor, called HexaTactile, is a soft tactile sensor array based on six MEMS barometers, where each of them is covered by a silicone layer in the form of an incomplete pyramid. HexaTactile consists of six soft and highly sensitive tactile modules which are placed on six sides of a cube to allow simultaneous measurement of the force in the positive and negative directions along the x, y and z axes. Some of the advantages of this sensor can be regarded as its high precision, excellent linearity (coefficient of determination r2=0.99), low cost and low noise. The accuracy of the sensor is 0.01 N, within a range of 4 N and therefore HexaTactile can be suitably attached to a robot end-effector for human-robot interaction applications. Then, using the proposed force sensor some control scenarios, including fixed admittance control and active admittance control are applied for human-robot interaction purposes. From the experimental tests, it has been revealed that the active admittance control solved the drawbacks of fixed admittance control, for the considered case studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call