Abstract

Gemcitabine (GEM) is widely used in clinical practice in the treatment of cancer and several other solid tumors. Nevertheless, the antitumor effect of GEM is partially prevented by some limitations including short half life, and lack of tumor localizing. Carboxymethyl glucan (CMG), a carboxymethylated derivative of β-(1-3)-glucan, shows biocompatibility and biodegradability as well as a potential anticarcinogenic effect. To enhance the antiproliferative activity of GEM, four water soluble conjugates of GEM bound to CMG via diverse amino acid linkers were designed and synthesized. 1H NMR, FT IR, elementary analysis and RP-HPLC chromatography were employed to verify the correct achievement of the conjugates. In vitro release study indicated that conjugates presented slower release in physiological buffer (pH 7.4) than acidic buffer (pH 5.5) mimicking the acidic tumor microenvironment. Moreover, A549, HeLa and Caco-2 cancer cell lines were used to evaluate the in vitro cytotoxicity of conjugates and the results showed that binding GEM to CMG significantly enhanced antiproliferative activity of GEM on A549 cells. Therefore, these conjugates may be potentially useful as a delivery vehicle in cancer therapy and worthy of further study on structure-activity relationship and antiproliferative activity in vitro and in vivo, especially for lung tumor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call