Abstract

Internal die cooling during forging can reduce thermal loads, counteracting surface softening, plastic deformation and abrasive die wear. Additive manufacturing has great potential for producing complex geometries of the internal cooling channels. In this study, hybrid forging dies were developed combining conventional manufacturing processes and laser powder bed fusion (L-PBF) achieving conformal cooling channels. A characterisation of the used hot-work tool steel’s AISI H10 powder material was carried out in order to determine suitable parameters for L-PBF processing and heat treatment parameters. Additionally, the mechanical properties of L-PBF-processed AISI H10 specimens were investigated. Furthermore, the influence of different internal cooling channels regarding a possible structural weakening of the die were analysed by means of a finite element method (FEM) applied to a hot-forging process. The numerical results indicated that the developed forging dies withstood the mechanical loads during a forging process. However, during the investigation a large dependency between the resulting stresses and the chosen parameters were observed. By choosing the best combination of parameters, a reduction of the equivalent stress by 1000 MPa can be achieved. Finally, a prototype of the hybrid-forging dies featuring the most promising cooling channel geometry was manufactured.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.