7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.3390/rs11080905
Copy DOIJournal: Remote Sensing | Publication Date: Apr 13, 2019 |
Citations: 45 | License type: CC BY 4.0 |
Indoor mobile mapping systems are important for a wide range of applications starting from disaster management to straightforward indoor navigation. This paper presents the design and performance of a low-cost backpack indoor mobile mapping system (ITC-IMMS) that utilizes a combination of laser range-finders (LRFs) to fully recover the 3D building model based on a feature-based simultaneous localization and mapping (SLAM) algorithm. Specifically, we use robust planar features. These are advantageous, because oftentimes the final representation of the indoor environment is wanted in a planar form, and oftentimes the walls in an indoor environment physically have planar shapes. In order to understand the potential accuracy of our indoor models and to assess the system’s ability to capture the geometry of indoor environments, we develop novel evaluation techniques. In contrast to the state-of-the-art evaluation methods that rely on ground truth data, our evaluation methods can check the internal consistency of the reconstructed map in the absence of any ground truth data. Additionally, the external consistency can be verified with the often available as-planned state map of the building. The results demonstrate that our backpack system can capture the geometry of the test areas with angle errors typically below 1.5° and errors in wall thickness around 1 cm. An optimal configuration for the sensors is determined through a set of experiments that makes use of the developed evaluation techniques.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.