Abstract

Cancer is a serious global health issue, and apoptosis is a logical and practical cancer therapeutic strategy. Apoptosis responses to internal and external signals. Both BH3 domain in the pro-apoptotic proteins and truncated BH3 domain can stimulate cell apoptosis. However, the faults of peptides in systemic administration restrict the applications of truncated BH3 domain. Ferritin, as an attractive nanoparticle with the capacity of self-assemble to unique hollow spherical structure, could display truncated BH3 domain an N-terminal. Thus, in this study, we designed a pro-apoptosis self-assembling protein nanoparticle by BH3 domain fusion at N-terminal of ferritin. We evaluated the size, cytotoxicity and pro-apoptosis effect of these nanoparticles. The results showed that RGD-BH3-HFn, BH3-HFn and HFn had uniformly spherical structure with sizes at 26.08±0.11nm, 22.07±0.67nm, and 16.81±0.88nm, respectively; RGD-BH3-HFn has stronger cytotoxicity against tumor cells than BH3-HFn and HFn. The total apoptosis ratios (including necrosis) of C6 cells induced by RGD-BH3-HFn, BH3-HFn, and HFn proteins were 15.24%, 10.13% and 2.14%, respectively; those of bEnd.3 cells were 15.47%, 7.33% and 1.70%, respectively; while the total apoptosis rate (including necrosis) of MCF-7 cells were 3.24%, 4.9% and -1.68%, respectively. The results suggested self-assembling RGD-BH3-HFn could target to C6 cells and bEnd.3 cells, and enhance tumor cells apoptosis, its apoptosis effect against C6 cells was 7.11-fold that of HFn, and apoptosis effect against bEnd.3 cells was 9.08-fold that of HFn. These results indicated BH3 domain can be designed as targeting pro-apoptotic nanoparticles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call