Abstract
Blocking, a special case of rerandomization, is routinely implemented in the design stage of randomized experiments to balance the baseline covariates. This study proposes a regression adjustment method based on the least absolute shrinkage and selection operator (Lasso) to efficiently estimate the average treatment effect in randomized block experiments with high-dimensional covariates. We derive the asymptotic properties of the proposed estimator and outline the conditions under which this estimator is more efficient than the unadjusted one. We provide a conservative variance estimator to facilitate valid inferences. Our framework allows one treated or control unit in some blocks and heterogeneous propensity scores across blocks, thus including paired experiments and finely stratified experiments as special cases. We further accommodate rerandomized experiments and a combination of blocking and rerandomization. Moreover, our analysis allows both the number of blocks and block sizes to tend to infinity, as well as heterogeneous treatment effects across blocks without assuming a true outcome data-generating model. Simulation studies and two real-data analyses demonstrate the advantages of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.