Abstract
In real life, situations may arise when the available data are insufficient to provide accurate estimates for the domain, the small area estimation (SAE) technique has been used to get accurate estimates for the variable under study. The problem of missing data is a serious problem that has an impact on sample surveys, but small area estimates are especially prone to it. This paper is a basic effort that suggests design based synthetic imputation methods for the domain mean estimation using simple random sampling in order to address the issue of missing data under SAE. The expression of the mean square error for the proposed imputation methods are obtained up to first order approximation. The efficiency conditions are determined and a thorough simulation study is carried out using artificially generated data sets. An application is included with real data that further supports this study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.