Abstract

A design approach to a novel wideband circular sector patch antenna is proposed. Design guidelines are laid down based on an approximate 1.5-wavelength, multimode magnetic dipole, and the cavity model. Then, the flared angle of the circular sector patch and the corresponding usable resonant modes for wideband radiation are determined. It is demonstrated that the resonant TM4/3,1 and the TM8/3,1 modes within a 270° circular sector patch radiator can be simultaneously excited, perturbed, and employed to form a wideband unidirectional radiation characteristic with two resonances. Prototype antennas are designed and fabricated to experimentally validate the dual-resonant wideband property on a single-layered substrate. It is further demonstrated that the antenna designed on a 5-mm-thick air substrate exhibits an available radiation bandwidth (ARB) of 14.5%, while the printed one designed on a 2-mm-thick modified Teflon substrate exhibits an ARB of 6.5%. It is evidently validated that the proposed approach can be employed to effectively enhance the operational bandwidth of microstrip patch antennas without increasing antenna profile, inquiring multiple radiators or employing reactance compensation techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call