Abstract

Masonry often requires strengthening to withstand against extreme actions such as earthquakes, cyclones and flooding. Recently, new methods have been developed to strengthen masonry, such as fabric reinforced cementitious matrixes and fibre reinforced polymers. However, other strengthening systems such as welded wire meshing (WWM), reticulatus and plastering with cementitious matrixes/mortar (CP) have been also practiced to reinforce masonry, conversely no systematic design guidelines are available for these methods. In this study, an attempt has been made to establish rational design approaches to predict the shear resistance of WWM, reticulatus and CP methods. Three sets of experimental database have been developed for design verification. The effectiveness of these strengthening methods was appraised by comparing their structural performances. The available formulations to predict the shear resistance of unreinforced masonry (URM) and CP strengthened masonry were assessed against the established database, and suitable modifications were proposed to effectively account the contribution of cementitious matrix. A unified approach to estimate the shear strength was proposed based on the contribution of URM, CP and reinforcements. The design approach is shown to conservatively predict the shear strength of strengthened masonry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.