Abstract

17beta-Hydroxysteroid dehydrogenases (17beta-HSDs) are enzymes that are responsible for reduction or oxidation of hormones, fatty acids and bile acids in vivo, regulating the amount of the active form that is available to bind to its cognate receptor. All require NAD(P)(H) for activity. Fifteen 17beta-HSDs have been identified to date, and with one exception, 17beta-HSD type 5 (17beta-HSD5), an aldo-keto reductase, they are all short-chain dehydrogenases/reductases, although overall homology between the enzymes is low. Although named as 17beta-HSDs, reflecting the major redox activity at the 17beta-position of the steroid, the activities of these 15 enzymes vary, with several of the 17beta-HSDs able to reduce and/or oxidise multiple substrates at various positions. These activities are involved in the progression of a number of diseases, including those related to steroid metabolism. Despite the success of inhibitors of steroidogenic enzymes in the clinic, such as those of aromatase and steroid sulphatase, the development of inhibitors of 17beta-HSDs is at a relatively early stage, as at present none have yet reached clinical trials. However, many groups are now working on inhibitors specific for several of these enzymes for the treatment of steroid-dependent diseases, including breast and prostate cancer, and endometriosis, with demonstrable efficacy in in vivo disease models. In this review, the recent advances in the validation of these enzymes as targets for the treatment of these diseases, with emphasis on 17beta-HSD1, 3 and 5, the development of specific inhibitors, the models used for their evaluation, and their progress towards the clinic will be discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.