Abstract

How to accurately and efficiently measure the profiles of the terrain on which agricultural machines operate has been an ongoing research topic. In this study, a surface profiling apparatus (profiler) was developed to measure agricultural terrain profiles along parallel tracks. The profiler is mainly composed of sensor frames, an RTK-GNSS system (Real Time Kinematics-Global Navigation Satellite Systems), laser sensors, an Inertial Measurement Unit (IMU) sensor and a data acquisition system. Along with a full description of how the terrain profiles were produced, a methodology to compensate for the tractor motion was included in the sensor data analysis. In field profiling validation, two trapezoidal bumps with known dimensions were used to assess the ability of the terrain profiler to reproduce the vertical profiles of the bumps, resulting in root mean square error (RMSE) of 3.6-4.7 mm and 4.5-5.1 mm with profiling speeds of 1.02 and 2.56 km/h, respectively. In addition, a validation test was also conducted on an asphalt road by profiling a flat road with the measuring wheels of the profiler rolling on the flat section but with the tractor wheels driving over a trapezoidal bump to excite the tractor pitch and roll motion. The measured profiles then also exhibited a flat road, which showed the ability of the profiler to remove the tractor motion from the profiling measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.