Abstract

The multi-input converters play a significant role in developing grid-independent hybrid electric vehicles (GIHEVs). This article describes the design and analysis of a single-ended primary-inductor converter (SEPIC)-based novel multi-input DC-DC converter (MIC) for grid-independent hybrid electric vehicles (GIHEVs) that is powered by a solar photovoltaic (PV) panel and a fuel cell. The average large-signal, small-signal, and steady-state modelings are demonstrated to achieve high-quality design and analysis. The proposed converter promises wide output voltage and power flow management at lower duty cycle values. The sources can transfer energy to the load either jointly or individually in this converter with the appropriate operation of the power switches. A hardware prototype is also developed and tested efficiently to uphold the mathematical modeling, design, and operation. With fewer switches, lower voltage stress, and fewer circuit components, the suggested converter claims better gain and higher (96%) efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.