Abstract

IntroductionLow muscle mass secondary to disease and ageing is an important cause of excess mortality and morbidity. Many studies include a MR brain scan but no peripheral measure of muscle mass. We developed a technique to measure posterior neck muscle cross-sectional area (CSA) on volumetric MR brain scans enabling brain and muscle size to be measured simultaneously.MethodsWe performed four studies to develop and test: feasibility, inter-rater reliability, repeatability and external validity. We used T1-weighted MR brain imaging from young and older subjects, obtained on different scanners, and collected mid-thigh MR data.ResultsAfter developing the technique and demonstrating feasibility, we tested it for inter-rater reliability in 40 subjects. Intraclass correlation coefficients (ICC) between raters were 0.99 (95% confidence intervals (CI) 0.98–1.00) for the combined group (trapezius, splenius and semispinalis), 0.92 (CI 0.85–0.96) for obliquus and 0.92 (CI 0.85–0.96) for sternocleidomastoid. The first unrotated principal component explained 72.2% of total neck muscle CSA variance and correlated positively with both right (r = 0.52, p = .001) and left (r = 0.50, p = .002) grip strength. The 14 subjects in the repeatability study had had two MR brain scans on three different scanners. The ICC for between scanner variation for total neck muscle CSA was high at 0.94 (CI 0.86–0.98). The ICCs for within scanner variations were also high, with values of 0.95 (CI 0.86–0.98), 0.97 (CI 0.92–0.99) and 0.96 (CI 0.86–0.99) for the three scanners. The external validity study found a correlation coefficient for total thigh CSA and total neck CSA of 0.88.DiscussionWe present a feasible, valid and reliable method for measuring neck muscle CSA on T1-weighted MR brain scans. Larger studies are needed to validate and apply our technique with subjects differing in age, ethnicity and geographical location.

Highlights

  • Low muscle mass secondary to disease and ageing is an important cause of excess mortality and morbidity

  • A technique to measure posterior neck muscle cross-sectional area (CSA) on volumetric MR brain scans would enhance the value of volumetric MR brains scans: both brain and muscle size could be measured without additional scanning

  • Study 1: Feasibility study The measurements made with the chosen technique were used to calculate intra-class correlation coefficients (ICC) to compare the median value of 3 measurements made by rater A against rater B

Read more

Summary

Introduction

Low muscle mass secondary to disease and ageing is an important cause of excess mortality and morbidity. Many studies include a MR brain scan but no peripheral measure of muscle mass. We developed a technique to measure posterior neck muscle cross-sectional area (CSA) on volumetric MR brain scans enabling brain and muscle size to be measured simultaneously. Current imaging techniques used to measure muscle size include whole body or regional DEXA scans and volumetric or cross-sectional area measurements on MR or CT scans of the arm or leg [5]. Whilst the above techniques remain the current gold standard, they are not commonly employed in clinical practice or in studies out with those directly investigating muscle mass (eg studies of sarcopenia or cachexia). Volumetric MR brain scans are commonly used in both research and clinical practice. These scans often include much of the posterior neck muscles. A technique to measure posterior neck muscle CSA on volumetric MR brain scans would enhance the value of volumetric MR brains scans: both brain and muscle size could be measured without additional scanning

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call