Abstract

Disordered rock-salt compounds are becoming increasingly important due to their potential as high-capacity positive electrode materials for lithium-ion batteries. Thereby, a significant number of studies have focused on increasing the accessible Li capacity, but studies to manipulate the electrochemical potential are limited. This work explores the effect of transition-metal substitution on the electrochemistry of ternary disordered rock-salt-type compounds with LiM2+0.5V0.54+O2 stoichiometry (M = Mn, Fe, Co) directly synthesized through mechanochemistry. Rietveld refinements of synchrotron X-ray diffraction patterns confirm the disordered rock-salt structures. First-principles density functional theory study is used to predict the impact of the cation substitution on the expected average voltage and the electronic structures of these materials are used to analyze the underlying redox processes. For LiM2+0.5V4+0.5O2 (M = Mn, Fe, Co), discharge voltages increase in the order of Mn < Fe < Co with 2.28, 2.41, and 2.51 V, exhibiting discharge capacities of 219, 207, and 234 mAh g-1, respectively. In comparison, for the disordered rock-salt Li2VO3, an average discharge voltage of ∼2.2 V with V5+/4+ redox couple has been reported. However, detrimental electrode-electrolyte interactions manifested as transition-metal dissolution has been found to result in severe capacity fading. Thereto, the use of a concentrated 5.5 M LiFSI increased the cycling stability significantly, effectively reducing transition-metal dissolution. The underlying reasons for the capacity fading of disordered rock salts are yet unclear. We stress the importance of cathode-electrolyte interactions, thus opening new directions for the improvement of cation-disordered materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.