Abstract

A robust controller design for the voltage control of an autonomous three-phase voltage source converter (VSC) is proposed. As compared with the conventional proportional plus integral (PI) controllers, fractional order controllers make the VSC system robust due to their fractional characteristics. The fractional PI $\lambda$ controller has an additional degree of freedom $\lambda$ along with $k_p$ and $k_i$ gains of the conventional PI controller. Detailed modeling of a VSC is used in the controller design process so as it include inner current control and filter dynamics. The outer fractional voltage controller is designed such that the VSC system satisfies a required phase margin, with improved robustness in the system and capability to attenuate the noise. The overall system stability is analyzed using both bode plot and step response, and these responses are compared with a conventional PI controller. Further, the dynamic performance of the fractional controller is evaluated by simulating the nonlinear system. A hardware prototype is also developed to demonstrate the practical realization of the controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.