Abstract

This article focuses on a new type of permanent magnet-friction integrated brake. The design scheme of integrated brake is proposed. Taking the maximization of braking moment and the minimization of volume as the dual optimization objectives, the particle swarm optimization algorithm is used to optimize the integrated brake, and the main structure parameters of the integrated brake are obtained. Based on the obtained structure parameters, the 3-D model of integrated brake is established. The mathematical models of electromagnetic field and temperature field of integrated brake are given, respectively. Taking a typical braking process as an example, the magnetic field of integrated brake is analyzed based on COMSOL software, which verifies the correctness of the design model of permanent magnet brake. The eddy current loss in the magnetic field of permanent magnet brake and the thermal contact of friction brake are taken as heat sources of the integrated brake, then the temperature field of integrated brake is analyzed. The analysis results show that the integrated brake meets the requirements of braking performances, and improves the heat recession resistance compared with the traditional friction brake.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.