Abstract

Minimum weight configurations for two types of graphite-epoxy hat-stiffened compression-loaded panels fabricated by the thermal-expansion-molding (TEM) manufacturing process were evaluated analytically and experimentally for designs with load index Nx/L values ranging from 100 to 800. The two types of panels contain graphite-epoxy face sheets with a foam core and hat stiffeners which are either open or filled with foam. Constraints on the extensional and shear stiffnesses are imposed on the design so that the panels will satisfy typical constraints for aircraft wing structures. Optimal structurally efficient TEM panels are compared to commercially available aluminum aircraft structures. Predicted load-strain relationships agree well with experimental results. Significant impact damage to the unstiffened face sheet and foam core does not noticeably reduce the load carrying ability of the panels, but damage to the stiffened face sheet reduces the failure load by 20 percent compared to unimpacted panels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.