Abstract

As part of an EM (electromagnetic) gun technology demonstration program, a systematic design approach targeted at identifying critical gun design constraints affecting hypervelocity projectile performance has been pursued. Results of the study led to a laboratory-based EM gun design that provides bore straightness and tolerances characteristic of light-gas guns, dynamic bore deformations comparable to those of conventional guns, the ability to change and test rail/sidewall insulator materials quickly, and superior in-bore performance diagnostics. A high-stiffness, easily maintained, precision-bore 9-MJ EM launcher has been designed and fabrication is virtually complete. A half-scale prototype of this hydraulically prestressed EM gun design has been fabricated and successfully tested. The authors discuss the railgun design approach and performance parameters, the analytical and empirical railgun structured simulation techniques used to validate the full scale gun design, and the fabrication status and initial performance test results.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.