Abstract

Agricultural mulch waste that is mechanically recycled has a high resource value. It has been found that the mulch is tightly entangled in the crop straw, forming a knotted feature that prevents further resource utilization. Traditional cutting tools were found to be ineffective in breaking up the knotted feature. In response to the above problems, a sliding cutting device for mechanically recovered mulch waste was proposed and built. The structure of the device and key components were designed and analyzed. A three-factor five-level orthogonal test was conducted and regression variance analysis was performed with the Central Composite Design (CCD) module in Design expert 8. The relationship model was constructed between the test factors such as supporting motor speed a, cutting-support rotation speed ratio b, and cutting edge angle c and the response indicators such as film breakage rate y1 and knotted feature removal rate y2. The influence law between each key parameter with its significant interaction and the waste crushing effect was analyzed, and the optimum combination of parameters of the crushing device were obtained. Under the same conditions, the errors between the physical test values and the model prediction values of the two response indicators were 2.17% and 3.52%, respectively, indicating that the verification test results were basically consistent with the model prediction results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call