Abstract

AbstractSubmarine landslides in gas hydrate areas are a significant geo-hazard that can cause considerable damage. The processes and mechanism of submarine landslides caused by gas hydrate dissociation are not clearly understood. Therefore, we designed a micro-electro-mechanical systems (MEMS) accelerometer array to study and monitor the deep displacement of submarine landslides. The MEMS accelerometer array consists of several gravity acceleration-sensing units that are protected and positioned using a flexible circuit board and elastic steel tape, such that all the units are connected to an Inter-Integrated Circuit (IIC) communication bus. By sensing the three-axis tilt angles, the direction and magnitude of the displacement for a measurement unit can be calculated; then, the overall displacement of the array is calculated as the difference in the displacements from the initial values. To ensure the accuracy of the tilt angle and displacement calculation, the calibration and verification test of the single MEMS sensor and sensor array is conducted. The MEMS accelerometer array is verified with respect to its principle and arrangement by a laboratory physical model test, and the initial experimentation demonstrated the capacities of the monitoring system for collecting real-time and in-situ information about the dynamic process and propagation of slope failure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call