Abstract

A synchronous-profiling, low-position-cutting, flexible-reel-belt-conveyor, low-loss soybean header was designed to address the problems of a lack of soybean harvesting machines supporting soybean-corn strip intercropping, the few existing soybean headers, and the high loss rate of soybean headers. By establishing a dynamic model of the synchronous-profiling cutting device, the key structure and operation parameters that affect the performance of synchronous profiling were determined, while the key parameters of the flexible-reel-belt conveyor device were determined by theoretical analysis. Based on ADAMS rigid-flexible coupling, simulation analysis was conducted on the working process of the synchronous-profiling cutting device, verifying that the profiling cutting device can effectively control the height of the cutter off the ground with undulating ground and that the cutting device can accurately and quickly respond to ground excitation, meeting the requirements of synchronous-profiling, low-position cutting. Field tests showed that the loss rate and stubble height of the soybean headers are 1.34% and 70.36 mm, respectively, which are 55% and 22.7% lower than the existing reel-type rigid soybean headers, meeting the actual production requirements. This study can provide a reference for the structural design of soybean harvesting headers and the reduction of header losses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call