Abstract

Functional electrical stimulation of lower limb muscles during rowing provides a means for the cardiovascular conditioning in paraplegia. The possibility of shaping stimulation profiles according to changes in knee angle, so far conceived as changes in seat position, may help circumventing open issues associated with muscle fatigue and movement coordination. Here, we present a subject-specific biomechanical model for the estimation of knee joint angle during indoor rowing. Anthropometric measurements and foot and seat positions are inputs to the model. We tested our model on two samples of elite rowers; 15 able-bodied, and 11 participants in the Rio 2016 Paralympic games. Paralympic rowers presented minor physical disabilities (LTA-PD classification), enabling them to perform the full rowing cycle (with legs, trunks, and arms). Knee angle was estimated from the rowing machine seat position, measured with a linear encoder, and transmitted wirelessly to a computer. Key results indicate the root mean square error (RMSE) between estimated and measured angles did not depend on group and stroke rate ( ). Significantly greater RMSE values were observed, however, within the rowing cycle ( ), reaching on average 8 deg in the mid-recovery phase. Differences between estimated and measured knee angle values resulted in slightly earlier (5%) detection of knee flexion, regardless of the group and stroke rate considered. Offset of knee extension, knee angle at catch and range of knee motion were identified equally well with our model and with inertial sensors. These results suggest our model describes accurately the movement of knee joint during indoor rowing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.