Abstract
AbstractThere has been a rapid improvement in SiC materials and power devices during the last few years. SiC unipolar devices such as Schottky diodes, JFETs and MOSFETs have been developed extensively and advantages of insertion of such devices in power electronic systems have been demonstrated [1, 2]. However, unipolar devices for high voltage systems suffer from high drift layer resistance that gives rise to high power dissipation in the on‐state. For such applications, bipolar devices are preferred due to their low on‐resistance. In this article, the physics and technology of SiC bipolar devices, namely Bipolar Junction Transistors (BJTs), Insulated Gate Bipolar Transistors (IGBTs), and Gate Turn Off Thyristors (GTOs), are discussed. A detailed review of the current status and future trends in these devices is given with an emphasis on the device design and characterization. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.