Abstract

This paper presents a detailed techno-economic review and assessment of a hydrogen refueling station (HRS) powered by a grid-connected photovoltaic (PV) system to address the issues of carbon emissions and energy sustainability in transportation. In the study, the HRS system with 1, 3 and 5 MW PV installed capacity for Ankara, the capital city of Türkiye, is considered for different system lifetimes. In the proposed HRS, on-site hydrogen production is achieved through anion exchange membrane water electrolysis (AEMWE) using a grid-connected PV system, and the produced hydrogen is stored in a cascaded storage system and is utilized at the HRS station. In order to evaluate the cost competitiveness and economic viability of the designed HRS system, the levelized cost of hydrogen (LCOH) is determined by considering the initial investment costs, operating expenses and potential revenue streams. The results show that the HRS capacity, PV installed capacity and system lifetime significantly impact the LCOH. The technoeconomic analysis results show that the best system configuration was determined as 8.54 €/kg H2 in the 20-year long term refueling scenario for a 5 MW installed PV capacity with a daily refueling capacity of 170 kg H2. This study contributes to the development of sustainable energy infrastructure by providing a comprehensive framework for the design, calculation and economic evaluation of PV-integrated hydrogen refueling stations. The results provide valuable information for policymakers, industry stakeholders, and researchers to help achieve a carbon-neutral transportation sector and promote energy sustainability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.