Abstract

Sequestration and removal of dissolved heavy metal ions from aqueous waste streams is a challenging task. Ethylenediaminetetraacetic acid (EDTA) is a hexadentate chelating ligand capable of forming 1:1 complex with various heavy metal ions while iminodiacetic acid (IDA) is analogous to half a unit of EDTA. A new styrene based monomer M1 bearing dimethyl iminodiacetate group was designed and synthesized in good yield to meet this objective. Free radical polymerization of M1 generated the homopolymer, which upon base hydrolysis generated the water-soluble chelating homopolymer P10, bearing sodium salt of IDA as the chelating group. The overall yield of P10 was 76.80% and the solubility was 5 mg/mL at room temperature. The water soluble polymer P10 was investigated for its ability to bind various heavy metal ions by UV–vis spectroscopy and was found to efficiently sequester Cu2+, Cd2+, Zn2+, Pb2+, Ni2+, Co2+, Cr3+, Fe2+ and Fe3+. The effect of pH on Cu2+ binding with P10 showed that every two IDA bearing monomeric repeat units binds with one Cu2+ ion at pH 7 suggesting that it forms complexes analogous to EDTA. Thermogravimetric analysis showed that the synthesized polymer possesses high thermal stability up to 400 °C. The potential for recovery and reuse of the polymer has been demonstrated with Cu2+ ion. The reported results suggest that this water-soluble chelating homopolymer is an excellent material with very high potential for application in wastewater treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call