Abstract
Membrane separation is regarded nowadays as a preferred method for production of purified hydrogen. Palladium (Pd) is an attractive membrane material due to its ability to dissociate molecular hydrogen into atoms. It is usually deposited on the porous substrate that can provide good mechanical support and reduce the thickness of the membrane for maximizing hydrogen permeability. Pd membrane used for hydrogen separation must be thin enough to increase hydrogen flux and reduce cost while remaining thick enough to retain adhesion, attrition resistance and mechanical integrity during high temperature cycles. In this paper, the progress of electroless deposition of Pd around the pore area at surface of porous stainless steel was recorded and a bridge structure that was formed during the membrane deposition around the pore area of the substrate was illustrated. After that, the porous substrate was modified using micro-or nano-size metal or metal oxide particles in order to reduce pore size in the substrate surface. The experimental results obtained from hydrogen permeation through the Pd membranes having the thickness from 400 nm to 18 μm built on both modified and original porous stainless steel substrates demonstrate that these thin membranes are solid and they can be used at the temperature of 550°C and hydrogen pressure difference of 3.447x105 Pa. The proposed processing will allow optimizing the design and fabrication of thin Pd membranes on different porous substrates for hydrogen separation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.