Abstract
Resistance of malaria parasites has quickly developed to almost all used antimalarial drugs. Accordingly, the discovery of new effective drugs to counter the spread of malaria parasites that are resistant to existing agents, especially acting on multi-targets, is an urgent need. The cysteine protease falcipain-2 (FP-2) and dihydrofolate reductase (DHFR) play crucial roles in the Plasmodium life cycle. In this study, a series of first-gereration small molecular dual inhibitor of FP-2 and DHFR have been designed and synthesized based on the lead compound 1, which was randomly identified by screening FP-2 inhibitors in our laboratory. Six compounds (2f-g, 2j, and 2m-o) showed improved dual inhibitory activities against FP-2 (IC(50)=2.7-13.2μM) and DHFR (IC(50)=1.8-19.8μM), and the inhibitory capability of compound 2o against FP-2 and DHFR were increased ∼8 and ∼6 times than that of compound 1, respectively. Moreover, compound 2o exhibited moderate in vivo antimalarial activity in a dose dependent fashion, its safety and survival rate were slightly better than that of positive drug. The preliminary SAR was obtained, meanwhile, molecular modeling result provided the key structural information to maintain the dual inhibitory activity, and was helpful for future dual inhibitors design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.