Abstract

Two purely inorganic three-dimensional (3D) frameworks [Mn4(H2O)11V(IV)(18)O42(PO4)](7-) (1) and [Mn2(H2O)7V(IV)(18)O42(PO4)](11-) (2) were synthesized under hydrothermal conditions and fully characterized by single-crystal X-ray structural analysis, IR spectroscopy, thermogravimetric analysis and PXRD. Structural analysis revealed that these two compounds contained a similar all reduced polyoxoanion [V(IV)(18)O42(PO4)](15-) linked by different amounts of manganese centers to form 3D framework materials. The V centers in these two compounds were all reduced to the +IV oxidation state, resulting in an all reduced polyoxoanion, which was firstly used as the building block for constructing 3D framework materials. The all reduced typical polyoxoanion [V(IV)(18)O42(PO4)](15-) with 15 negative charges supplied enough charge amount to accept TM cations. In these two structures, the anions were surrounded by 12 and 5 Mn(2+) ions, respectively, adjusted by varying the feeding amount of MnCl2·4H2O. An electrocatalytic study revealed that compound 1 exhibits electrocatalytic activity for reduction of H2O2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.