Abstract

Nucleic acid drugs are attracting significant attention as prospective therapeutics. However, their efficacy is hindered by challenges in penetrating cell membranes and reaching target tissues, limiting their applications. Nucleotidyl lipids, with their specific intermolecular interactions such as H-bonding and π-π stacking, offer a promising solution as gene delivery vehicles. In this study, a novel series of nucleotide-based amphiphiles were synthesized. These lipid molecules possess the ability to self-assemble into spherical vesicles of appropriate size and zeta potential in aqueous solution. Furthermore, their complexes with oligonucleotides demonstrated favorable biocompatibility and exhibited antiproliferative effects against a broad range of cancer cells. Additionally, when combined with the cationic lipid CLD, these complexes displayed promising in vitro performance and in vivo efficacy. By incorporating DSPE-PEGylated cRGD into the formulation, targeted accumulation of siG12D in pancreatic cancer cells increased from approximately 6% to 18%, leading to effective treatment outcomes (intravenous administration, 1 mg/kg). This finding holds significant importance for the liposomal delivery of nucleic acid drugs to extrahepatic tissues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.