Abstract

The 18-mer oligodeoxynucleotides (ODNs) that can inhibit survivin gene expression were selected as a model gene drug to study hepatic-targeting drug delivery system. Novel galactosylated polymers (cholesteryloxycarbonylamino) ethylamine-α,β-polyasparthydrazied (CHE-PAHy-Lacs), which target asialoglycoprotein receptor on hepatic parenchymal cells (PC), were designed and synthesized as non-toxic, non-antigenic and non-teratogenic ligands for liposomes. The liposomes incorporating different CHE-PAHy-Lacs were prepared and characterized by zeta potential and particle size analyzer. The drug encapsulation efficiency was measured by gel filtration method. 1,1′-Dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate was used as a marker for all the liposome preparations in the in vivo experiments. The CHE-PAHy-Lac liposomes produced a significant improvement in the encapsulation efficiency of ODNs (28.73–51.37%) compared with conventional liposomes (9.88%). The in vivo results showed that the liposomes incorporating CHE-PAHy-Lac, which contained about 30% (w/w) galactosyl residues, exhibited marked accumulation in the liver and hepatic PC. These results suggest that the novel galactosylated polymers used for liposomes have a great potential as a gene delivery system for hepatic targeting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call